Vagueness at every order

Andrew Bacon

September 14, 2010

Principles:

1.
$$\Delta^* p \to \Delta \Delta^* p$$
.

2.
$$\neg \Delta^* p \rightarrow \Delta \neg \Delta^* p$$
.

(1) and (2) give us the unacceptable:

PRECISION: $\Delta \Delta^* p \lor \Delta \neg \Delta^* p$.

by LEM and reasoning by cases (in conditional form, i.e., globally and locally valid.)

Reasons to deny PRECISION:

- 1. 'is a Δ^* child' is Sorite sable in the same way 'is a child is'.
- 2. If it were precise what barrier would there be to my finding out how many nanoseconds my Δ^* childhood lasted, in the same way there is no barrier to my finding out how many nanoseconds in a year.
- 3. Assertions like 'my Δ^* childhood lasted 12987587298739 nanoseconds' are evidently bad, but if it is not because of their vaguess, then what?

1 Denying Precision

(1) follows from distributivity:

DIST $\bigwedge_{i < \omega} \Delta \phi_i \to \Delta \bigwedge_{i < \omega} \phi_i$.

(2) follows from

$$\begin{split} \mathsf{B}: & p \to \Delta \neg \Delta \neg p \\ \mathsf{B}^{n\prime}: & p \to \Delta \neg \Delta^n \neg p \\ \mathsf{B}^n: & p \to \Delta(q \to \phi_n) \text{ where } \phi_1 := \neg \Delta \neg p; \ \phi_{n+1} := \neg \Delta \neg (q \land \phi_n) \\ \mathsf{B}^*: & \Delta(p \to \Delta p) \to (\neg p \to \Delta \neg p) \end{split}$$

Frame conditions

B: Reflexive frames, if Rxy then Ryx

 $B^{n'}$: 'Everywhere you can get to you can get back from in less than n steps'. If Rxy then for some $z_1, \ldots, z_n, Ryz_n, \ldots, Rz_1x$.

 B^n : 'Everywhere you can get to you can get back from in less than *n* steps each of which you can initially get to'. If *Rxy* then for some z_1, \ldots, z_n , $Ryz_n, Rz_nz_{n-1}, \ldots, Rz_1x$ and Rxz_1, \ldots, Rxz_n .

B^{*}: 'Everywhere you can get to you can get back from in **finitely many** steps each of which you can initially get to'. If Rxy then for some n and $z_1, \ldots, z_n, Ryz_n, Rz_nz_{n-1}, \ldots, Rz_1x$ and Rxz_1, \ldots, Rxz_n .

In the lattice of modal logics KTB^* is the infimum of KTB^n .

KTB^{*} imposes a second order condition on it's frames. It is not compact or strongly complete, but it is characterised by the frames with the unbounded backtrack property.

2 Models

Definition 2.0.1. A v-frame is a triple $\langle W, d(\cdot, \cdot), f(\cdot) \rangle$ where $\langle W, d \rangle$ is a metric space, and $f: W \to \mathbb{R}^+$ obeys the following:

$$(A) \ \forall w, v \in W, |f(w) - f(v)| \le d(w, v)$$

A formula of propositional modal logic is valid on a v-frame $\langle W, d, f \rangle$ iff it is valid on the Kripke frame $\langle W, R \rangle$ where Rxy iff $d(x, y) \leq f(x)$.

Fact: The modal logic of v-frames is KT. In particular you can refute B^n for each n and B^*

Fact: The modal logic of v-frames based on \mathbb{R}^n in which f(x) > 0 contains KTB^* , but refutes each B^n .